How GM Beat Tesla to the First True Mass-Market Electric Car – WIRED

Posted: Monday, January 11, 2016

ON THE MORNING of April 2, 2014, US senator Barbara Boxer glared down from behind a microphone in a Senate hearing room in Washington, DC, demanding answers from America’s industrial problem child, General Motors. The company had just instituted its largest recall ever, after reports that faulty ignition switches on millions of cars from the 2000s had been responsible for numerous deaths and injuries. Boxer, as part of a congressional investigative committee, was castigating GM’s new CEO, Mary Barra, who had been in the job a mere three weeks. “Woman to woman, I am very disappointed,” Boxer said. “The culture that you are representing here today is a culture of the status quo.”

Barra sat there, practicing the studiously neutral, calmly repentant facial nonexpression of someone getting grilled by Congress. The main theme of Barra’s testimony was that the old GM—with a docile, nodding bureaucratic culture that swept problems under the rug—had died with the company’s 2009 bankruptcy, bailout, and restructuring and that the new GM was different. But the “culture of the status quo” charge wasn’t so easy for Barra, of all people, to deflect: She’s not only a GM lifer, she’s a second-generation lifer. Her dad was a die-maker for Pontiac, and she started with the company when she was 18. (She’s 54 now.)

On the other hand, Barra had a strong hand in a lot of the most transformative stuff going on at GM. Chief case in point: Not long before she became CEO, Barra had been tapped to run development of new products, the position once held by Lutz. So by the time she was hauled before Congress in 2014 to answer for the company’s past sins, she had been overseeing the efforts of GM’s electrification gang for three years.

When I walk into Barra’s office one recent fall day, she’s standing in front of her desk wearing black pants, a black turtleneck, and an Apple Watch. (Offsetting the Steve Jobs vibe just a bit is a calendar on the wall that shows a fluffy white cat in the backseat of an Opel Corsa.) As Barra tells it, the process to develop the Bolt really took off when GM’s team was regrouping after a major setback. In 2012, GM invested in a California startup called Envia, which had developed a new battery that posted incredible performance numbers. Envia promised to deliver a 200-mile battery by fall 2013. But its technology turned out to be a flop.

So in spring 2013, GM’s senior leaders and the most important figures on its electrification team gathered in the virtual reality room of the company’s Design Center to assess the situation. “We started to go, ‘OK, what can we do?’” Barra says. Was there another route to 200 miles? The EV folks hesitated but started pulling together different elements—improvements in battery life, cost savings in motors—that, combined, might represent a way forward. “We can push our way toward 200,” Fletcher recalls thinking.

The meeting turned into a full-on brainstorming session, one that ended, Barra says, with what looked like a viable path to the Bolt: “And we all went, ‘Let’s do that.’”

And so the design team set to work devising a car that would appeal to consumers well beyond the ecowarrior, early-adopter demographic. Some flashy ideas were thrown out early on: A carbon fiber body? Lightweight but too expensive at this price point. Suicide doors? Eye-catching, but they added mass without functional benefits. Capped wheels? Good for aerodynamics, but they signaled something science project–y. “It’s got to look like a serious car,” design lead Stuart Norris says. The team delivered as spacious an interior as possible, with upright glass to make the relatively small car feel more substantial and a raised driving position for a commanding view of the road.

Meanwhile, the technical folks set about making Norris’ design go 200 miles on a charge. At their most basic, batteries are made of powders, the morphology of which—grain size, distribution, how they’re bound together—is key to the power and energy of each cell. LG, General Motors’ battery provider, had cooked up a noticeably improved cell that retained energy capacity particularly well when it got hot, as lithium-ion batteries tend to. That meant Chevy could use a smaller cooling system and stick more cells in the battery pack for more range. LG also improved the battery’s conductivity, so the ions flowed faster, translating to quicker acceleration (the Bolt can go from 0 to 60 in seven seconds).

As soon as the battery was ready, engineers at GM’s Michigan proving ground hacked together a bastard car using the front half of a Chevy Sonic and the rear of a Buick Encore. They called it the Soncore and fitted it with the Bolt battery pack and motor, using the Franken-vehicle to make sure the propulsion system worked. That way, once the real Bolt body was in development, the teams responsible for the car’s chassis controls, vehicle dynamics, and suspension tuning could get right to work.

As 2014 bled into 2015, Chevy engineers built about 100 Bolt prototypes, shipping them around the US for real-world testing to verify the findings of the battery lab. The cars went to Arizona and Florida. The team drove them up the California coast and negotiated San Francisco traffic. They ran the prototypes over rough roads, looking for ways to reduce noise and vibration (extra-tricky in a car with no engine to mask odd sounds). They chose specially developed Michelin tires to minimize rolling resistance and improve range. Working fast, they made thousands of changes to the car, constantly looking for ways to improve. By the time I arrived for a test-drive, in October, the team still had more than 500 open work orders to complete.


Write a Reply or Comment:

Your email address will not be published.*